
CCA
Common Component Architecture

The CCA ISIC and You
(aka CCTTSS)

PI: Rob Armstrong
rob@sandia.gov

Co-Investigators:
David Bernholdt (ORNL), Lori Freitag Diachin (SNL), Dennis Gannon (Indiana Univ.),

James Kohl (ORNL), Gary Kumfert (LLNL), Lois Curfman McInnes (ANL), Jarek
Nieplocha (PNNL), Steven Parker (Univ. of Utah), Craig Rasmussen (LANL)

http://www.cca-forum.org/ccttss

March 2003 PI Meeting

CCA
Common Component Architecture

Outline

• CCA Components: what are they?
• Working with the CCA

– Software
– Tutorials
– Getting help: CCA adepts and community

• Future of the CCA

CCA
Common Component Architecture

What are components, frameworks?

• No universally accepted definition…yet
– My working def’n: software that is composable
– Framework is everything that isn’t a component

• Interacts with the outside world only through
well-defined interfaces
– Implementation is opaque to the outside world

• Can be composed with other components
– “Plug and play” model to build applications
– Composition based on these interfaces

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

CCA
Common Component Architecture

Ports: Connections Interface Exchange

• Components interact through well-defined interfaces,
or ports
– In OO languages, a port is a virtual class or interface
– In Fortran, a port is a bunch of subroutines or a module

• Components may provide ports – implement the
class or subroutines of the port

• Components may use ports – call methods or
subroutines in the port

• Links denote a caller/callee relationship, not
dataflow!
– e.g., FunctionPort could contain: evaluate(in Arg, out Result)

NonlinearFunction

FunctionPortFunctionPort

MidpointIntegrator

IntegratorPort

CCA
Common Component Architecture

Framework Stays “Out of the Way” of
Component Parallelism

• Single component multiple data
(SCMD) model is component
analog of widely used SPMD
model

• Each process loaded with the
same set of components wired
the same way

P0 P1 P2 P3

Components: Blue, Green, Red

Framework: Gray

MCMD/MPMD also supported

•Different components in same
process “talk to each” other via
ports and the framework

•Same component in different
processes talk to each other
through their favorite
communications layer (i.e.
MPI, PVM, GA)

CCA
Common Component Architecture

Working with CCA

• The CCA components are easy to build
– Designed to easily import existing code into components
– Reversible – you don’t “lose” the original code

• Significant components available to download
– Buildable code right now
– RPMs real soon now

• Tutorials are hands on and no nonsense
– You will be able to build a component
– Tutorials are usually conducted in and around CCA mtg’s.
– Copies of all tutorial presentations are on the web

CCA
Common Component Architecture

Making your code CCA compliant in 2
easy steps

1. Create a single method, function,or
subroutine in C++, C, or Fortran
– C++ SIDL rendering:

void setServices(Services svc) { /*...*/}

More interesting component:
put more code here

• This won’t make a very interesting
component.

2. There isn’t a “2”.

CCA
Common Component Architecture

CCA leaves your code alone

• Everything that makes your component a
component is right here:
void setServices(Services svc) { /*...*/}

• The rest of the code is yours.
• The really hard part we have yet to talk about:

carefully define what functionality your
component
– Provides to the outside world
– Uses from the outside world

CCA
Common Component Architecture

CCA Software: Component Inventory
• Services and Performance

– Ccaffeine – SNL – Services for parameter
ports, connections between SIDL and
classic ports, MPI access, etc.

– Performance Component –
Oregon/LANL/SNL – classic & SIDL –
Measurement capabiliites for components

• Data Management, Meshing, and
Discretization
– Global Array Component – PNNL –

classic & SIDL – Multidimensonal dense
distributed arrays

– TSTTMesh – ANL/SNL – classic –
Unstructured mesh management

– FEMDiscretization – ANL/SNL – classic –
Finite element discretization

– GrACEComponent – SNL – classic –
Parallel structured adaptive mesh
refinement

• Integration and Optimization
– CvodeComponent – LLNL (TOPS) –

classic – Implicit ODE integrators
– TAOSolver – ANL – SIDL – Solvers for

constrained and unconstrained optimization

• Parallel Data Description,
Redistribution, and Visualization

• DistArrayDescriptorFactory – ORNL
– classic – Uniform means for
describing dense multi-dimensional
arrays

• CumulvsMxN – ORNL – classic –
“MxN” parallel data redistribution

• VizProxy – ORNL – classic –
Companion “MxN” endpoint for
passing data to front-end viewers for
graphical rendering

• Scientific Applications
• Chemistry components – SIDL –

PNNL/SNL – electronic structure
components based on NWChem and
MPQC

• Combustion components – classic –
SNL – based on GrACEComponent
and physical/chemical models

RPM coordinator: B. Allan (SNL)

CCA
Common Component Architecture

• CCA Forum Tutorial Working Group
– Rob Armstrong (SNL), David Bernholdt (ORNL, chair), Lori

Freitag Diachin (SNL), Wael Elwasif (ORNL), Dan Katz
(JPL), Jim Kohl (ORNL), Gary Kumfert (LLNL), Lois Curfman
McInnes (ANL), Boyana Norris (ANL), Craig Rasmussen
(LANL), Jaideep Ray (SNL), Torsten Wilde (ORNL)

• Highlights:
– CCA Concepts
– A Simple Component Example
– Language Interoperability using Babel
– Writing CCA Components
– More Complex Component-Based Applications
– CCA Status and Plans

The CCA Tutorial

CCA
Common Component Architecture

Tutorial Presentations

Pasadena, CACCA Forum MtgJan 2003

Baltimore, MDSC2002Nov 2002

Santa Fe, NMLACSI SymposiumOct 2002

Half Moon Bay, CACCA Forum MtgOct 2002

LBLACTS Collection
Workshop

Sep 2002

ANLCCA Forum MtgJun 2002

Townsend, TNCCA Forum MtgApr 2002

Santa Fe, NMCCA Forum MtgJan 2002

CCA
Common Component Architecture

Getting help with CCA technology

• Write to: cca-pi@cca-forum.org
• Usually adopters of CCA have a CCTTSS

liaison assigned to them
• Online manuals, tutorials:

http://www.cca-forum.org

CCA
Common Component Architecture

Reacting Flow Software “Facility”

• A Computational Facility for
Reacting Flow Science
(CFRFS), SciDAC
application center, PI: H.
Najm

• Epitome of componentized
applications
– There is no one application,

but a component “facility”

CCA
Common Component Architecture

Future of CCA

• Current big adopters are:
– Combustion (CFRFS)
– Quantum Chemistry

• This year
– big climate apps push
– a couple approaches for Fortran components exist

• climate and fusion early adopters

• More and better components
– structured, unstructured meshes (APDEC, TSTT)
– MxN, parallel IO
– refinements of existing frameworks and

components

CCA
Common Component Architecture

CCA will help you componentize your
code

• Converting your code is easy and reversible
– Creating interfaces is the hard part

• Significant and useful software in the form of
frameworks and components are available

• Much documentation and tutorials available

CCA
Common Component Architecture

CCA Impact Outside of SciDAC
• Climate prototype (Courtesy Shujia Zhou, ESMF)

ATM

OCN

